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Rainfall prediction is a very challenging task due to its dependence on many mete-
orological parameters. Because of the complex nature of rainfall, the uncertainty
associated with its predictability continues to be an issue in rainfall forecasting.
The Hurst exponent is considered as a measure of persistence and it is believed that
if a time series has persistence (as reflected by a Hurst exponent value greater than
0.5) it is also predictable. However, very limited studies have been carried out to
demonstrate this hypothesis. This study, through experimental work on hypotheti-
cal data as well as real data, demonstrates that the Hurst exponent can be taken as
an indicator for predictability provided that the exponent values at “smaller levels”
of the time series are also significantly greater than 0.5 together with the Hurst
exponent of the overall time series. It is also shown that it is better to predict the
“similarity” aspect associated with a time series (and derive the predicted rainfall)
than to predict the rainfall directly.
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1 | INTRODUCTION

Since rainfall directly affects the flood and drought of a
country, it is a very important meteorological parameter to
predict. Due to the dependence on other meteorological
parameters (temperature, wind speed, relative humidity and
pressure), the prediction of rainfall becomes difficult. As a
measure to address this issue, a review of previously
reported work indicates that researchers have resorted to dif-
ferent approaches to preprocess the inputs or include addi-
tional information which can aid in prediction. For instance,
Ahmadi et al. (2009) examined the relationship between
monsoon rainfall in Iran and a large scale climate signal such
as sea surface pressure, sea level pressure difference over the
effective region and sea level temperature, to forecast the
monthly rainfall. A fuzzy rule model was developed for pre-
dicting a 6 month scale using statistical models. Hung et al.
(2009) applied an artificial neural network (ANN) model for
predicting the real time hourly rainfall using a combination

of meteorological parameters such as relative humidity, air
pressure, wet bulb temperature and cloudiness as well as
rainfall at surrounding stations and the rainfall at the point of
forecasting. Based on the model performance, a sensitivity
analysis was done to identify the dominant model input
parameters. In addition, the input preprocessing method,
spectrum analysis method, mutual information technique
and wavelet analysis have also seen applications in rainfall
prediction (Wu et al., 2010; Nourani et al., 2011; Goyal,
2014; Babel et al., 2015).

Researchers have also reported forecasting accuracy in
terms of error measures other than the root mean square error
(RMSE) and the correlation co-efficient in order to represent
the predictive ability of the models proposed better. Kumara-
siri and Sonnadara (2008), for instance, proposed short term
and long term rainfall forecasting models reporting predic-
tion in terms of success rates within an error limit. Similarly,
Olsson et al. (2004), instead of predicting actual rainfall
intensities directly, used a neural network to determine
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rainfall occurrence and rainfall intensity during rainy
periods, and after categorizing rainfall into intensity catego-
ries these categories were predicted. From the reported work
on rainfall forecasting, it is also observed that different
researchers have proposed different approaches to rainfall
prediction and no single method or technique can be
accepted as universal as far as rainfall forecasting is con-
cerned. For instance, Kar et al. (2012) proposed a multi-
model ensemble scheme for predicting monthly rainfall in
India during July. They observed that, whereas skills of rain-
fall prediction over eastern parts of India were significantly
improved, the same conclusions were found to be invalid for
some other regions because rainfall pattern, intensity and
amount are affected by many complex parameters such as
sea surface temperature and sea level pressure in the Pacific
and Indian Oceans (resulting in the occurrence of the El
Niño Southern Oscillation) and the Indian Ocean Dipole
(Houston, 2006; Ashok et al., 2007).

From the foregoing discussion, it can be concluded that
before attempting rainfall prediction with statistical methods
it is better to ascertain first whether the given rainfall time
series is predictable or not. Researchers have used many
methods to analyse the complexity of a time series including
the Hurst exponent, deterministic index and spectral cluster-
ing (Rehman and El-Gebeily, 2009; Tatli, 2014; Tatli and
Dalfes, 2016). Since the Hurst exponent cannot be used as a
prognostic tool, the present study uses the Hurst exponent as
a diagnostic tool for investigating the complexity of a time
series. A time series may contain both short term memory
and long term memory associated with the event. So, correct
identification of the memory effect will aid in identifying the
pattern associated with the given time series which when
modelled can lead to reliable forecasting accuracy. While
short term memory can be estimated using an autocorrelation
function (ACF) (and consequently relevant antecedent rain-
falls can be considered as inputs), the identification of long
term memory poses certain difficulties particularly when
dealing with limited time series records. Conventionally,
researchers have reported estimation of the Hurst exponent
as an indicator of long term memory and hence persistence
of a prevailing trend or pattern in a given time series. A
Hurst exponent value greater than 0.5 indicates good persis-
tence of the time series while a value less than 0.5 indicates
anti-persistence. A Hurst exponent of 0.5 indicates Brownian
motion behaviour. Work by researchers such as Tatli (2015)
indicates that the term “persistence” may also be considered
as a criterion to be applied as a predictability measure. Many
earlier researchers also inferred similar conclusions
(Rangarajan and Sant, 1997, 2004; Kalauzi et al., 2009;
Rehman and Siddiqi, 2009; Salomao et al., 2009; Li et al.,
2012). Although such conclusions are reported, to the
authors’ knowledge only a few studies have actually been
done to demonstrate the Hurst exponent as a measure of pre-
dictability. For instance, Peyghami and Khanduzi (2012)

reported very good accuracy in one lead forecast using an
ANN for automotive price time series data with a higher
Hurst exponent. Similarly, in rainfall prediction studies, the
work reported by Khalili et al. (2016) is the only study
which shows a good one lead prediction of a monthly time
series with a higher Hurst exponent. Since only limited work
has been reported on the relationship between rainfall pre-
dictability and the Hurst exponent, it is necessary to have a
more detailed understanding of this relationship. This study
investigates whether rainfall time series with a Hurst expo-
nent greater than 0.5 is always predictable or not. It is pro-
posed to employ the rescaled range (R/S) analysis method
for estimation of the Hurst exponent. Further, since ANN is
very extensively used in studies related to forecasting of
hydrological variables including rainfall, the same has been
accepted in this study for one lead time forecast
(Chattopadhyay and Chattopadhyay, 2008; Aksoy and
Dahamsheh, 2009; Babel et al., 2015). The rest of the paper
is organized as follows. First the methodology used in this
study is briefly discussed together with the data used for the
analysis. The next section is devoted to a discussion of the
results. In order to investigate the relationship between the
Hurst exponent and the predictability of the rainfall time
series, it is desired to conduct the experiments first for a set
of hypothetical rainfall time series and then for the real data.
Finally conclusions are arrived at.

2 | METHODS AND DATA

2.1 | Rescaled range (R/S) analysis method

Several techniques/methods are preferred by various
researchers for estimating the Hurst exponent of which the
R/S analysis method is commonly used (Taqqu et al., 1995;
Kendziorski et al., 1999; Feng and Zhou, 2013; Tatli, 2015).
In the work reported by Rao and Bhattacharya (1999), the
robustness of the R/S method in comparison to the fractional
Gaussian noise model is established for estimation of the
Hurst exponent and is recommended for use. Hence, the R/S
analysis method was adopted in this study. For a non-
stationary time series, R/S analysis might give a Hurst expo-
nent greater than 1 (Setty and Sharma, 2015), in which case
the detrended fluctuation analysis method can be considered.

R/S analysis is a means of characterizing the time series,
the operation of which is summarized as follows. Splitting
time series into many shorter series is the first step. Hurst
(1951) proposed the following five general equations for R/S
analysis which can be used for any time series and is not
restricted to series in Brownian motion alone:

R
S

� �
s
= k sH ð1Þ

where k is a constant and s is the length of each of the
shorter time series; 1 ≤ s ≤ N, N being the entire length of
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the time series. R is the range of the time series and S is the
standard deviation.

The range of each size is calculated as:

R = max z1, z2, z3,…, zsð Þ – min z1, z2, z3,…, zsð Þ s = 1, 2,…,N

ð2Þ
zs is the cumulative series estimated as:

zs =
Xs

i = 1

yi ð3Þ

where s = 1, 2, ..., N. ys is the adjusted time series estimated
by subtracting the sample mean from each of the shorter
time series as:

ys = xs − �x ð4Þ
where s = 1, 2, ..., N and

�x =
PN

i = 1xi
N

ð5Þ

The Hurst exponent is estimated as the slope of the line
plotted between (R/S)s and s on a log–log scale.

2.2 | Artificial neural network

An ANN can model a complex, nonlinear time series without
assuming a relationship between the input and output vari-
ables. Since the Hurst exponent indicates nonlinearity in terms
of the predictability of a time series, it is proposed to use an
ANN because of its ability to model complex nonlinear pro-
cesses. The choice of an ANN in this study compared to non-
linear multiple regression is justified in view of the reported
success of ANNs compared to the latter in various applica-
tions (Srivastava and Tripathi, 2012; Mahmoodi and Naderi,
2016; Vinoth et al., 2016; Yıldirimm et al., 2017).

The ANN is a statistical regression tool motivated by
biological neural networks which are used in machine learn-
ing. These networks correspond to a system of intercon-
nected “neurons.” The neurons are linked through
connections or communication channels to transmit numeric
data encoded in different ways. Each neuron functions only
when data are received through the connections. The itera-
tive learning process, characteristic of neural networks,
adjusts the data cases each time. An appropriate ANN archi-
tecture has to be designed for the given set of inputs and out-
puts in the input and output layers respectively and by
selecting the hidden neurons. The data series has to be
divided into training, testing and validation, and the best
combination is arrived at only by trial and error. The stop-
ping criterion has to be set based on the performance of the
network in the test set or any other suitable criterion such as
the total number of epochs. As the patterns are introduced to
the network, the input signals are transferred to output sig-
nals by means of activation functions such as sigmoid,
hyperbolic and Gaussian. The correct choice of activation

function is also done through trial and error. Many different
types of training algorithms are available with various char-
acteristics and performances, among which the back propa-
gation algorithm is most commonly used. This algorithm
updates the weights of the network by adjusting the error
between observed and predicted, finally leading to a trained
network after repeating this process a sufficient number of
times (Haykin, 1999; ASCE Task Committee, 2000a;
2000b; Nourani et al., 2011; Ajmera and Goyal, 2012; Siva-
pragasam et al., 2014). Many researchers have used an ANN
as a “forecasting model” in the field of atmospheric sciences
and meteorology (Gheiby et al., 2003; Tapiador et al., 2004;
Chattopadhyay and Chattopadhyay, 2008; Dahamsheh and
Aksoy, 2009; Babel et al., 2015; Collins and Tissot, 2015;
Valipour, 2016; Modarres et al., 2018).

The performance of the forecast is assessed by the
RMSE goodness-of-fit measure defined by the following
equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
1

Xmð Þi − Xsð Þi
� �2

s
ð6Þ

where X is the variable that is being forecasted; the sub-
scripts s and m represent the simulated and measured values,
respectively, and the total number of training records is n.

2.2.1 | A note on ANN training

Of the total available data, about 64% is used for training,
21% for testing and 15% for validation for the case studies
considered (on average), although the optimal combination
may vary from model to model. The multilayer feedforward
back propagation algorithm is used. The ANN training is ter-
minated when the mean square error for the test data is mini-
mum. The simplest architecture consisting of one input
layer, one hidden layer and one output layer is adopted for
all the case studies, with the optimal number of hidden neu-
rons arrived at by trial and error in each case. A more com-
plex architecture is not preferred due to the limited dataset
available for model training which might pose serious prob-
lems in convergence. Apart from the selection of architec-
ture, the number of epochs, the choice of activation
functions and the learning rate are also suitably refined to
arrive at the best model for each of the case studies
considered.

2.3 | Data description

Two sets of hypothetical data of rainfall time series are gen-
erated. The first hypothetical monthly rainfall time series
(HS1) is generated randomly between a rainfall range of
0–100 mm for the first half and 100–200 mm for the second
half and is shown in Figure 1. The second hypothetical rain-
fall time series (HS2) is generated randomly between a rain-
fall range of 100–400 mm and is also shown in Figure 1.
The first series is designed to indicate a strong increasing
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trend and the second series a weak trend. This is confirmed
by trend analysis which indicated that the first hypothetical
time series has a statistically significant positive trend while
the second series indicated a positive trend which is not sta-
tistically significant.

For the real time data, monthly rainfall records from
Cherrapunji were collected from the Indian Water Portal
website for the period between 1901 and 1964. Cherrapunji
is a subdivisional town in the East Khasi Hills district in the
Indian state of Meghalaya and is commonly known to be the
wettest part on the Earth. It is located at 25.30 � N 91.70 � E
with an average elevation of 1,484 m, average temperature
of 11.5 �C and an estimated average annual precipitation of
11,777 mm. The rainfall time series for June and September
is shown in Figure 2.

3 | RESULTS AND DISCUSSION

3.1 | Hypothetical rainfall time series

First the hypothetical time series HS1 and HS2 are consid-
ered which do not represent any actual physical area. The
ACF is calculated for both series. A typical ACF equation is
shown in Equation 7 based on Box and Jenkins (1976). The
lag k ACF defined for the given measurement of x1, x2, ..., xn
at time t1, t2, ..., tn is:

ρk =
Pn− k

i = 1 xi − �xð Þ xi + k − �xð ÞPn
i = 1 xi − �xð Þ2 ð7Þ

Here it is assumed that the observations are equally
spaced and hence the time variable t is not used.

The results of the ACF for both series indicate the
absence of short term memory in HS2.The inclusion of ante-
cedent rainfall in the ANN model building for HS1 did not
improve the prediction. The Hurst exponents are estimated
for both the time series HS1 and HS2 with values of 0.96
and 0.76 respectively. Since the Hurst exponent is signifi-
cantly higher than 0.5 in both the cases indicating strong per-
sistence, it is expected that the one lead forecast will also be
good. ANN models are developed for HS1 and HS2 with

40 data for training, 13 for testing and the remaining 10 data
for validation (as the optimal combination). The optimal
architecture was found to be 1:7:1 for the HS1 using logistic
functions whereas it was found to be 1:9:1 with the hyper-
bolic tangent function for HS2. The input and output can be
related functionally as:

Pt+1 = f Ptð Þ ð8Þ
where Pt is the precipitation at time t and Pt+1 is the precipi-
tation at time t + 1.

The one lead forecast for the validation set for HS1 and
HS2 is shown in Table 1 and plotted in Figures 3 and 4. As
seen from Figures 3 and 4, the prediction for HS2 is almost
a failure compared to HS1 which has an RMSE of
53.92 mm. Whilst a reasonably good prediction accuracy for
HS1 can be attributed to the high Hurst exponent (0.96),
with a Hurst exponent of 0.76 for HS2 the prediction is not
expected to fail.

A more detailed analysis was carried out to understand
the reason for this failure by estimating the Hurst exponent
by considering the time series at different levels. The first
level consists of the entire data series with a size of 64. The
second level consists of a data size of 32 (which is obtained
by dividing the entire series into two halves). The third level
consists of a data size of 16 (obtained by dividing the entire
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FIGURE 1 Hypothetical rainfall time series HS1 and HS2
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FIGURE 2 Rainfall time series for June and September

TABLE 1 Comparison of Hurst exponent and RMSE value for both the
hypothetical rainfall series

Dataset

Parameters HS1 HS2

Hurst exponent values

H (full series) 0.96 0.76

H1 1 0.51

H2 0.84 0.86

HT1 0.98 0.35

HT2 0.83 0.95

HT3 0.94 0.9

RMSE (mm) for prediction without SF

Training 34.18 79.39

Testing 24.01 67.28

Validation 53.92 97.01
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series into four equal parts). Similarly, the data size can be
obtained for the fourth to sixth levels. The Hurst exponent is
estimated for the first three levels (H1) and the next three
levels (H2) by plotting log R/S against the log of data size.
The Hurst exponent is also estimated for the first two levels
(HT1), the next two levels (HT2) and the last two levels (HT3)
of data size (i.e. one-third of the series is considered at a
time). This is tabulated for both the hypothetical rainfall
series in Table 1. An interesting understanding emerges from
a closer look at all the levels of Hurst exponents in Table 1.
It is seen that, while for the HS1 the Hurst exponents at all
levels are greater than 0.5, for HS2 H1 is 0.51 and HT1 is
0.35. These differences reflect an understanding of the time
series about its self-similar statistical structure. As noted by
Tatli (2015), the Hurst exponent can be used to detect statis-
tical self-similarity when a fractal structure indicates ran-
domness at the local level and deterministic behaviour at the
global level. Thus, for the prediction to be good, it is desired
that not only the overall Hurst exponent is significantly
greater than 0.5 but also the Hurst exponents at different
levels should reflect the same tendency (as indicated in
Table 1 for the HS1). In such cases, it is expected that there
will be some pattern in the time series (or self-similarity)
and hence the chances of prediction increase. With this infer-
ence, an attempt is made to improve the prediction of the

HS1 by finding the relationship between input and output
data. The one lead ahead rainfall is divided by the current
rainfall to get the similarity factor (SF), which is taken as the
output instead of the actual output for the training and testing
set as represented in the functional form:

SFt+1 = f Ptð Þ ð9Þ
where SFt+1 is the similarity factor at time t + 1. These data
are now trained using the ANN and validated for the valida-
tion set. The RMSE is found to be 34 mm. Figure 3 shows
the predicted values when rainfall is directly predicted and
when it is predicted using the SF. As seen from the figure,
the actual rainfall output and the predicted rainfall output
match closely when the SF is used in the training process.
The prediction accuracy, however, might be considerably
improved if more data were used for the ANN training. A
similar attempt is made with HS2 to improve the prediction.
As seen from Figure 4, there is only marginal improvement
in the predicted rainfall. This confirms our earlier inference
that the prediction of a time series can be ensured more con-
fidently if both the overall Hurst exponent and the Hurst
exponents at different levels of the time series are greater
than 0.5. It should be noted that since the rainfall time series
invariably has large variations (due to the random nature of
the rainfall event), it will be more useful to divide the entire
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time series into more than one class with rainfall prediction
done separately for each class.

Based on this analysis, the following generalized meth-
odology (Figure 5) can be proposed for checking the predict-
ability of a rainfall time series for a given month.

• The overall Hurst exponent for the times series has to be
estimated along with Hurst exponents at different levels
(obtained by dividing the time series into equal halves at
each subsequent step). If the overall Hurst exponent as
well as the Hurst exponents at different levels are

Rainfall time series for the given month

Estimation of Hurst Exponent at different levels { H1, H2, HT1, HT2, HT3}

Persistence and predictable confirming existence of some pattern

Categorize rainfalls of similar nature

Persistence but not  predictable. 

Hence No pattern in the data

Obtain SF by observing the pattern in the time series

Estimation of overall Hurst exponent (H)

Time series neither persistent nor 
predictable

Is { H1, H2, 

HT1, HT2, 

HT3}>0.5 ?

Is

{H}>0.5?

Predict SF using ANN

Calculate the predicted rainfall from the predicted SF

No

Yes

No

Yes

FIGURE 5 Proposed methodology to assess the predictability of the rainfall time series to improve their forecast using Hurst exponents, similarity factors
(SF) and artificial neural networks (ANN)
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significantly higher than 0.5, the predictability of the
time series is higher.

• The rainfall time series is classified to more than one
class in order to categorize rainfalls of a similar nature in
one category. In the case of the presence of self-
similarity in the time series, this may help improve the
predictability.

• Instead of using the actual rainfall in the output (for
ANN training), the SF can be used. From the predicted
SF, the predicted rainfall can be calculated.

3.2 | Cherrapunji rainfall time series

The proposed generalized methodology is applied to the
real rainfall data from Cherrapunji which represents an
area characterized by very high rainfall. The physical
framework of the study area affects the Hurst exponent
(Rangarajan and Sant, 1997). First the ACFs are estimated
for June and September and indicate the absence of short

term memory in the time series (Figure 6). The overall
Hurst exponent and the Hurst exponents at different levels
for 64 years of rainfall data for all the 12 months are
shown in Table 2. It is seen that, although the overall
Hurst exponent is significantly higher than 0.5 for all
months except the month of September, for other months
not all the Hurst exponents at different levels are greater
than 0.5, indicating that the predictability of rainfall is less.
An attempt is made to check the predictability for the time
series of June and September.

The rainfall time series for June has a Hurst exponent of
0.65 whereas H1 and HT1 are 0.49 and 0.56 respectively.
Hence, the predictability of this time series is expected to be
more uncertain. This was investigated through the ANN
training. The number of hidden neurons was found to be
seven with the logistic function used as the activation func-
tion for the optimal architecture. A comparison of the actual
and predicted values for the month is shown in Figures 7
and 8. As seen from Figure 7, the ANN has failed in the one
lead prediction under both conditions, i.e. with and without
the use of the SF. The ANN was also trained with many
other alternative architectures and other combinations of

TABLE 2 Hurst exponent value of Cherrapunji rainfall for all months

Dataset H (over all) H1 H2 HT1 HT2 HT3

January 0.65 0.36 0.94 0.29 0.66 1.00

February 0.78 0.93 0.92 0.88 0.35 0.96

March 0.75 0.53 0.85 0.35 0.92 1.00

April 0.76 0.63 0.96 0.61 0.68 1.00

May 0.79 0.75 0.95 0.75 0.66 1.00

June 0.65 0.49 0.91 0.56 0.60 1.00

July 0.67 0.55 0.87 0.51 0.60 1.00

August 0.69 0.48 0.87 0.29 0.72 1.00

September 0.81 0.80 0.92 0.74 0.68 1.00

October 0.66 0.37 0.89 0.04 0.69 1.00

November 0.74 0.50 0.89 0.27 0.82 1.00

December 0.72 0.53 0.89 0.47 0.76 1.00

0

500

1000

1500

2000

0 500 1000 1500 2000

P
re

d
ic

te
d

 R
a

in
fa

ll
 (

m
m

)

Actual Rainfall (mm)

Direct Prediction SF based Prediction
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training, testing and validation data but it did not improve
the prediction.

For September, the Hurst exponent was found to be
0.81. The Hurst exponents at all the levels were also found
to be significantly higher than 0.5 indicating the predictabil-
ity of the time series. ANN training was attempted with an
optimal architecture consisting of eight hidden neurons with
the sine function as the activation function. The time series
was split into two classes using a Kohonen network and each
sub-series was trained separately with the SF in the output.
Figure 8 shows the comparison of actual output and pre-
dicted output for the validation set from the two different
ANN trainings. Out of 10 data in the validation set, the rain-
fall prediction for six data has improved with the inclusion
of the SF. Further, as seen from the figure, the SF based pre-
diction follows the pattern of the actual output although dif-
fering in the values in some places. It is clearly seen that the
rainfall of September is more predictable.

4 | CONCLUSIONS

The prediction of rainfall time series is a typically challenging
problem. If the series has a strong autocorrelation function, the
prediction should first be attempted with the necessary anteced-
ent rainfall values. For a Hurst exponent greater than 0.5, the
fractal behaviour of the time series will show the presence of
long term memory and indicate that the series will be persistent.
This, however, does not necessarily indicate the predictability of
the series. To ensure predictability, the Hurst exponent should
be significantly greater than 1 not only for the overall time series
but also for the sublevels of the time series. In the absence of
this, the fractal self-similarity characteristics of the time series
will be less prominent leading to more uncertainty in the predic-
tion. It is also seen that the self-similarity can be represented in
the model training in terms of a similarity factor, the prediction
of which can be carried out instead of directly predicting the
rainfall values. The effect of self-similarity can be further
ensured by classifying the time series of a given month into two
or more categories and constructing an individual model for
training. In this study the Kohonen neural network was used for
classifying the time series, but any other appropriate classifica-
tion algorithm can also be used.

As a future scope of the study, it is recommended that
more detailed studies are carried out with data representing
the study area featuring arid, semi-arid, monsoon or rainfor-
est, desert, oceanic or terrestrial regions. The fractal behav-
iour of the rainfall time series can also be ascertained using
other indices, such as spectral clustering and deterministic
index in addition to estimation of the Hurst exponent.
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